Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

β-glucans and eicosapolyenoic acids as MAMPs in plant-oomycete interactions: past and present.

Identifieur interne : 000189 ( Main/Exploration ); précédent : 000188; suivant : 000190

β-glucans and eicosapolyenoic acids as MAMPs in plant-oomycete interactions: past and present.

Auteurs : Sara M. Robinson [États-Unis] ; Richard M. Bostock [États-Unis]

Source :

RBID : pubmed:25628639

Abstract

Branched β-1,3-glucans and the eicosapolyenoic acids (EP) are among the best characterized oomycete elicitors that trigger innate immune responses in plants. These elicitors were identified over three decades ago, and they were useful in the study of the sequence of physiological, biochemical and molecular events that induce resistance in plants. However, in spite of the cross-kingdom parallels where these molecules are well-characterized as immune system modulators in animals, their perception and modes of action in plants remains obscure. Oomycetes are among the most important plant pathogens, responsible for diseases that devastate crops, ornamentals, and tree species worldwide. With the recent interest and advances in our understanding of innate immunity in plants, and the redefining of many of the classical elicitors as microbe-associated molecular patterns (MAMPs), it seems timely and important to reexamine β-glucans and EP using contemporary approaches. In this review, we highlight early studies of β-glucans and EP, discuss their roles as evolutionarily conserved signals, and consider their action in relation to current models of MAMP-triggered immunity.

DOI: 10.3389/fpls.2014.00797
PubMed: 25628639
PubMed Central: PMC4292309


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">β-glucans and eicosapolyenoic acids as MAMPs in plant-oomycete interactions: past and present.</title>
<author>
<name sortKey="Robinson, Sara M" sort="Robinson, Sara M" uniqKey="Robinson S" first="Sara M" last="Robinson">Sara M. Robinson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, University of California Davis, Davis, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of California Davis, Davis, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bostock, Richard M" sort="Bostock, Richard M" uniqKey="Bostock R" first="Richard M" last="Bostock">Richard M. Bostock</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, University of California Davis, Davis, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of California Davis, Davis, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25628639</idno>
<idno type="pmid">25628639</idno>
<idno type="doi">10.3389/fpls.2014.00797</idno>
<idno type="pmc">PMC4292309</idno>
<idno type="wicri:Area/Main/Corpus">000184</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000184</idno>
<idno type="wicri:Area/Main/Curation">000184</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000184</idno>
<idno type="wicri:Area/Main/Exploration">000184</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">β-glucans and eicosapolyenoic acids as MAMPs in plant-oomycete interactions: past and present.</title>
<author>
<name sortKey="Robinson, Sara M" sort="Robinson, Sara M" uniqKey="Robinson S" first="Sara M" last="Robinson">Sara M. Robinson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, University of California Davis, Davis, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of California Davis, Davis, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bostock, Richard M" sort="Bostock, Richard M" uniqKey="Bostock R" first="Richard M" last="Bostock">Richard M. Bostock</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, University of California Davis, Davis, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of California Davis, Davis, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Branched β-1,3-glucans and the eicosapolyenoic acids (EP) are among the best characterized oomycete elicitors that trigger innate immune responses in plants. These elicitors were identified over three decades ago, and they were useful in the study of the sequence of physiological, biochemical and molecular events that induce resistance in plants. However, in spite of the cross-kingdom parallels where these molecules are well-characterized as immune system modulators in animals, their perception and modes of action in plants remains obscure. Oomycetes are among the most important plant pathogens, responsible for diseases that devastate crops, ornamentals, and tree species worldwide. With the recent interest and advances in our understanding of innate immunity in plants, and the redefining of many of the classical elicitors as microbe-associated molecular patterns (MAMPs), it seems timely and important to reexamine β-glucans and EP using contemporary approaches. In this review, we highlight early studies of β-glucans and EP, discuss their roles as evolutionarily conserved signals, and consider their action in relation to current models of MAMP-triggered immunity. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">25628639</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>01</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>5</Volume>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>β-glucans and eicosapolyenoic acids as MAMPs in plant-oomycete interactions: past and present.</ArticleTitle>
<Pagination>
<MedlinePgn>797</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2014.00797</ELocationID>
<Abstract>
<AbstractText>Branched β-1,3-glucans and the eicosapolyenoic acids (EP) are among the best characterized oomycete elicitors that trigger innate immune responses in plants. These elicitors were identified over three decades ago, and they were useful in the study of the sequence of physiological, biochemical and molecular events that induce resistance in plants. However, in spite of the cross-kingdom parallels where these molecules are well-characterized as immune system modulators in animals, their perception and modes of action in plants remains obscure. Oomycetes are among the most important plant pathogens, responsible for diseases that devastate crops, ornamentals, and tree species worldwide. With the recent interest and advances in our understanding of innate immunity in plants, and the redefining of many of the classical elicitors as microbe-associated molecular patterns (MAMPs), it seems timely and important to reexamine β-glucans and EP using contemporary approaches. In this review, we highlight early studies of β-glucans and EP, discuss their roles as evolutionarily conserved signals, and consider their action in relation to current models of MAMP-triggered immunity. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Robinson</LastName>
<ForeName>Sara M</ForeName>
<Initials>SM</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, University of California Davis, Davis, CA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bostock</LastName>
<ForeName>Richard M</ForeName>
<Initials>RM</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, University of California Davis, Davis, CA, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>01</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Phytophthora</Keyword>
<Keyword MajorTopicYN="N">arachidonic acid</Keyword>
<Keyword MajorTopicYN="N">eicosapolyenoic acid</Keyword>
<Keyword MajorTopicYN="N">innate immunity</Keyword>
<Keyword MajorTopicYN="N">oligosaccharins</Keyword>
<Keyword MajorTopicYN="N">oxylipins</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>09</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>12</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>1</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>1</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>1</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25628639</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2014.00797</ArticleId>
<ArticleId IdType="pmc">PMC4292309</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2001 Mar 2;276(9):6267-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11085991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1985 Jan;236(1):379-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3966802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Rev. 2004 Apr;198:267-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15199968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Jan;119(1):41-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9880344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2005;43:545-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1981 Apr 3;212(4490):67-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17747631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2002;40:137-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12147757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2001 Jun;14(6):725-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11386368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2011 Apr;6(4):531-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21474996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1987 Jul;84(3):891-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16665539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 Aug;23(8):991-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20615110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):7-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22198764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Jul;7(7):315-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12119169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2013 Aug;16(4):520-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23845737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2001 Nov 2;507(3):371-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11696374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Drug Targets. 2008 Feb;9(2):123-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18288963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2012 Apr;102(4):348-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22185336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jan;143(1):378-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17085514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Nov;100(3):1448-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16653144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Oct;22(10):3193-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20935246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1992 Oct;4(10):1333-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1283354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Jan;57(2):230-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18801014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lipids. 2009 Mar;44(3):207-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19037675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Mar;152(3):1562-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20081042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1994 Jan 20;1210(3):297-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7905748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Immunol. 2007 Mar;44(7):1509-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17084455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2005;43:229-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2012;50:359-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22681450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1982 Nov;70(5):1417-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16662691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 May 07;4:124</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23675375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Nov;112(3):997-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8938408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Mar;11(3):485-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10072406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2006 Jan;6(1):33-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16341139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 1998 Jul;20(7):569-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9723006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Nov;124(3):1027-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11080280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Feb;152(2):948-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19939946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Rev. 2004 Apr;198:249-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15199967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1990 Aug;182(1):81-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24197002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1992 Nov;188(4):498-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24178381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2009 Jun;47(6):511-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19167233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1992 Mar 15;204(3):1115-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1312932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 24;124(4):803-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16497589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2012 Aug 24;3:209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22936944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):1029-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9023377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2002;53:275-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2002 Sep 5;1584(1):55-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12213493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1991 Feb;3(2):137-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1840905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Anim. 2011;60(1):7-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21325748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1991 Feb;3(2):127-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1840904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Dec;5(12):e1000772</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20011122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2005 Apr;7(4):471-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15760447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jan 9;279(2):1132-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14578352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1999 Sep 17;458(2):129-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10481050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2012;28:489-521</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22559264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Mar 3;281(9):5506-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16407295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2011 Jan;6(1):13-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21248491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2000 Aug;381(8):705-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11030428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1982 Aug 6;217(4559):542-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17820543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 2011;29:1-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20936972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1992 Nov;20(3):513-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1421154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2009;47:153-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19400642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2009;60:379-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19400727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Oct;154(2):551-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20921183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1984 Sep 25;259(18):11312-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6540778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1999 Apr 14;1418(1):127-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10209217</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Robinson, Sara M" sort="Robinson, Sara M" uniqKey="Robinson S" first="Sara M" last="Robinson">Sara M. Robinson</name>
</region>
<name sortKey="Bostock, Richard M" sort="Bostock, Richard M" uniqKey="Bostock R" first="Richard M" last="Bostock">Richard M. Bostock</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000189 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000189 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25628639
   |texte=   β-glucans and eicosapolyenoic acids as MAMPs in plant-oomycete interactions: past and present.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25628639" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020